

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ КЫРГЫЗСКИЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

им. М.Рыскулбекова

Name of discipline and code : B.2.1. Mathematics

Lecturer	Supaeva Gulnaz Tunaevna
The contact information:	phone number: mob. 0557161185, office 0312325120
Amount of credits:	10
Date:	1-semester 2017-2018 academic year
Purpose and	The objectives of mastering the discipline "Higher Mathematics" are:
objectives of the	-forming students of a high mathematical culture-mastering the basic
course	knowledge of mathematics necessary in practical economic activity;
	-development of logical thinking and the ability to operate on abstract objects, inculcating the skills of the correct use of mathematical concepts and symbols to express various quantitative and qualitative relations; - a clear understanding of the mathematical component in the overall
	training of a specialist in economics and management. To achieve this goal, in the course of studying the course "Higher Mathematics" the problem of providing a broad general and
	sufficiently fundamental mathematical education for students of economic direction is being solved. Fundamental preparation includes a sufficient generality of mathematical concepts and constructions, providing a wide range of their applicability, reasonable accuracy of formulations of mathematical properties of the objects under study, logical rigor of the presentation of the subject, based on an adequate modern mathematical language.
Course Description	The course includes chapters from the following sections of higher
	mathematics: elements of linear algebra and analytic geometry, vector algebra, introduction to mathematical analysis, differential calculus of functions of one variable, study of functions using a derivative, indefinite integral, definite integral and its applications, functions of several variables, differential equations
Prerequisites	The school course of algebra and the beginning of analysis: the school
disciplines	course of geometry.
Post-requisition	Basic and special. course subjects
discipline	
Competencies	 As a result of mastering the discipline, a bachelor must know: basic concepts of linear and vector algebra (matrices, determinants, vectors, scalar, vector and mixed products of vectors, etc.) * basic concepts and problems of analytic geometry (line on the plane, space, curves of the second order) * basic concepts and methods of differential and integral calculus (limit, derivative, differential of a function of one and several variables, extrema of functions, etc.); * basic types of ordinary differential equations and methods for their solutions. To be able: * apply mathematical methods in solving professional problems:
	* differentiate and integrate;

	* use mathematical software packages to solve algebraic equations
	integrate and differentiate numerically:
	* establish the limits of applicability of methods: be able to check
	solutions.
	Use:
	*methods of solving problems of differential, integral calculus:
	* numerical methods of solution:
	methods of constructing a mathematical model of professional problems
	and a meaningful interpretation of the results obtained.
Course Policy	Do not be late for classes
	Do not skip classes, in case of illness, provide a certificate
	If the tasks are not fulfilled, the assessment is reduced
	Actively participate in the educational process
	Timely and diligently to do homework
	Be tolerant, open and friendly to fellow students and teachers
	Constructively support feedback in all classes
	Be punctual and compulsory
Teaching methods:	Active method, passive method, interactive method
8	
Form of knowledge	Assessment of knowledge will be conducted on the basis of the
control	European ECTS system. The ECTS system initially divides students
	between the theses "credits", "not credits", and then assesses the work of
	these two groups separately.
	Students who score more than 50 points receive a "pass" rating.
	"Excellent" (from 85 to 100 points), "good" (from 70 to 84 points),
	"satisfactory" (from 50 to 69 points).
	The points of the final evaluation are distributed as follows:
	Current control work (max) -40 points
	Border control work (max) -40 points
	Final control (written examination max) -20 points
	At deducing of a total estimation activity of students in the decision of
	the problems offered on employment will be considered.
	• The current test (homework) is necessary to consolidate the material
	studied, as well as to check the level of understanding of the material.
	Homework will contain calculation tasks that use basic facts and
	statements. Doing homework will give students the opportunity to
	understand the material they have passed.
	• Border testing is given to check knowledge of current materials. We
	will propose computational tasks, as well as theoretical tasks that reveal
	an understanding of the basic definitions. Correct execution of tests will
	give students a chance to gain high credit marks. One of the basic
	the metarial he has massed at a sufficiently high level. Test works will he
	held at the set time. Betelve of control works is not provided
	• Final control is a written examination. After receiving the even ticket
	the student must write down the answers to over questions in writing
	In order that students can properly proper for the even a list of even
	uestions is given in advance. The answer is considered best if the
	theoretical facts are illustrated by concrete examples
Literature	Rosie
	1 General course of higher mathematics for economists edited by prof
	1. Scheral course of ingher matternatics for economists cutted by prof.

	VI Ermakova. Textbook. INFRA - M.2001g.										
	2. Higher mathematics for economists edited by prof. N.Sh. Kremer.										
	Textbook Moscow, UNITI, 2013.										
	3. Collection of problems in higher mathematics for economists. Edited										
	by prof. VI ErmakovaUchebnoe posobi.Moskva, INFRA-M, 2006.										
	4. Workshop on higher mathematics for economists edited by prof.										
	N.Sh. Kremer. Tutorial. M. UNITY, 2002.										
	Additional										
	1. Kremer NS, BA Pathko, IM Trishin, M, N. Fridman Higher										
	mathematics for economists M: .UNITI, 2001.										
	2. Arefiev K.P., Ivlev E.T., Tarbokova T.V. Systems of linear equations.										
	-Tomsk: Rotoprint TPU, 1996.										
	3 Barvsheva VK Galanov Yu I Ivlev E T Pakhomova Ye G Theory										
	of Probability Tomsk ed TPU textbooks of Tomsk Polytechnic										
	University 2004										
	4 Δrefiev K P Ivley F T Tarbokova T V Systems of linear										
	equations - Tomsk: Rotanrint TPU 1006										
	5 Arefiev K P. Juley F.T. Tarbokova T.V. Vector algebra and analytic										
	geometry - Tomsk: Rotaprint TPU 1006										
	6 Kang Vong hee Differential equations of the first order - Tomsk:										
	o. Kang rong-nee. Differential equations of the first order Tomsk:										
Independent work of	Homework M1										
a student	(Deadline 02 10 17 -07 10 17)										
astuucht	1 Calculate $54.3R$ if										
	$(2 \ 1 \ 2 \ 4)$ $(4 \ 2 \ 2 \ 2)$										
	a) $A = \begin{bmatrix} 5 & -1 & 2 & 4 \\ & & & \\ \end{bmatrix}; B = \begin{bmatrix} 4 & 5 & -2 & 2 \\ & & & \\ \end{bmatrix};$										
	$(1 \ 2 \ 5 \ 6)' \ (-3 \ 3 \ 1 \ 8)'$										
	$\begin{pmatrix} -1 & 0 & 4 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$										
	$5 \land 2 \land $										
	0) $A = \begin{bmatrix} 5 & 1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 & -2 \end{bmatrix}$										
	$\begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & 1 & 4 \end{pmatrix}$										
	2. Calculate $A \cdot B$										
	$(1 5 -2) \qquad (3 2 -1)$										
	$a) A = \begin{bmatrix} 5 & -1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 2 & 5 \end{bmatrix}$										
	$\begin{pmatrix} 3 & -2 & 6 \end{pmatrix}$ $\begin{pmatrix} 0 & -3 & 1 \end{pmatrix}$										
	(-6, 1, 2)										
	$\begin{vmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \end{vmatrix} = \begin{pmatrix} 3 & 0 \end{pmatrix}$										
	$(5) A = \begin{vmatrix} 4 & 1 & -5 \\ 3 & -5 \end{vmatrix}; B = \begin{vmatrix} -3 & 2 \end{vmatrix}$										
	$\begin{pmatrix} 1 & 7 & 4 \end{pmatrix}$ $\begin{pmatrix} 5 & 1 \end{pmatrix}$										
	2 a) Calculate D $(AB)^T$ C^2										
	3. a) Calculate $D = (AB)^T - C^2$,										
	3. a) Calculate $D = (AB)^T - C^2$, $\begin{pmatrix} 3 & 4 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \end{pmatrix} (1 & 5)$										
	3. a) Calculate $D = (AB)^T - C^2$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 3 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 1 & 3 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 1 & 5 \end{pmatrix}$										
	3. a) Calculate $D = (AB)^T - C^2$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$										
	3. a) Calculate $D = (AB)^{T} - C^{2}$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$										
	3. a) Calculate $D = (AB)^T - C^2$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$ 6) Calculate D=ABC-3I										
	3. a) Calculate $D = (AB)^T - C^2$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$ 6) Calculate D=ABC-3I $\begin{pmatrix} 1 & 2 & -3 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$										
	3. a) Calculate $D = (AB)^{T} - C^{2}$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$ 6) Calculate D=ABC-3I $A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 0 & 2 \end{pmatrix} B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; C = (2 & 0 & 5); I$										
	3. a) Calculate $D = (AB)^{T} - C^{2}$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$ 6) Calculate D=ABC-3I $A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 0 & 2 \\ 4 & 5 & 3 \end{pmatrix} B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; C = (2 0 5); I$										
	3. a) Calculate $D = (AB)^{T} - C^{2}$, $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 0 & 5 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}; C = \begin{pmatrix} 1 & 5 \\ 3 & 2 \end{pmatrix}$ 6) Calculate D=ABC-3I $A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 0 & 2 \\ 4 & 5 & 3 \end{pmatrix} B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; C = (2 0 5); I$ 4 Calculate determinants										

a)
$$\begin{vmatrix} 3 & -2 \\ 4 & 5 \end{vmatrix}$$
; 6) $\begin{vmatrix} 6 & 2 \\ 7 & 3 \end{vmatrix}$; b) $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$; $\begin{vmatrix} 1 & 1 & 1 \\ 2 & -3 & 1 \\ 4 & -1 & -5 \end{vmatrix}$
5. a) $\begin{vmatrix} -1 & 3 & 1 & 2 \\ -5 & 8 & 2 & 7 \\ 4 & -5 & 3 & -2 \\ -7 & 8 & 4 & 5 \end{vmatrix}$; 6) $\begin{vmatrix} 3 & 5 & 7 & 2 \\ 7 & 6 & 3 & 7 \\ 5 & 4 & 3 & 5 \\ -5 & -6 & -5 & -4 \end{vmatrix}$
6. Calculate A^{-1}
a) $A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -2 & 3 \\ 1 & 4 & 2 \end{pmatrix}$; 6) $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & -1 \\ 1 & -7 & 3 \end{pmatrix}$
7. a) $\begin{cases} 2x_1 - x_2 + 5x_3 = -1, \\ 3x_1 + x_2 + x_3 = 2 \end{cases}$ 6) $A = \begin{pmatrix} 1 & 2 & -1 \\ 2x_1 + x_2 - 3x_3 = -7, \\ 4x_1 + 2x_2 + x_3 = 2 \end{cases}$
Homework Ne2
(Deadline 06.11.17 -11.11.17)
1. Given vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find a) the vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find a) the vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find a) the vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find a) the vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find a) the vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find a) the vectors $\alpha = (2, -1, 0, 3), \hat{\alpha} = (-1, 1, 2, -1), C = (2, 1, -2, 0)$
Find the texplay the texplay of the vector $A = 0$ and $f = 2c + 2(\alpha - b) - 3(\alpha + b)$
b) the scalar product of the vector $A = 0$ the texplay the contomored formally the vector f ;
c) the length of the vector $S = 1$ and $f = 2c + 2(\alpha - b) - 3(\alpha + b)$
b) the scalar product of the vector $A = 0$.
3. Write the equation of the circle with the center at the point C (5, -4) and the radius equal to 7.
4. Find the lengths of the axes, the coordinates of the foci, and the eccentricity of the ellipse $9x^3 + 16y^3 = 196$.
5. The straight line f_1 has the equation $6y - 4x - 3 = 0$, the straight line is it the equation $2y - 40x + 7 = 0$, the straight line is stime the quation $18y - 17x + 51 = 0$. Which of these lines goes up faster than everyone. Draw the graphs.
7. Find the equation of the straight line passing through the point (1, 2) and parallel to the

	of this type in the table. It also indicates revenues from the sale of ype and the total amount of raw materials of this type that can be by the enterprise.									
	Type of raw material	Norms of consumption product	amount of raw							
		A	В	(kg)						
	I II III	12 4 3	4 4 12	300 120 252						
	Profit from the sale of one product (som)	30	40							
	Given that product (sales are secured), it is required which the company's profit	cts A and B uired to drav from the sale	can be produ v up a plan for of all products	ced in any ratio r their release, in s is maximum.						
	Solve linear programm methods: 2. $F(X) = 2x_1 + x_2 \rightarrow n$	Solve linear programming problems with two variants methods: $F(X) = 2x_1 + x_2 \rightarrow min$ 3. $F(X) = 4x_1$								
	$\begin{cases} x_1 + x_2 \le 12 \\ 2x_1 - x_2 \le 12 \\ 2x_1 - x_2 \ge 0 \\ 2x_1 + x_2 \ge 4 \\ x_2 \ge 0 \end{cases}$		$\begin{cases} -x_{1} + x_{2} \\ 5x_{1} - 2x \\ 8x_{1} - 3x \\ 5x_{1} - 6x \end{cases}$	$c_{2} \le 5$ $c_{2} \le 20$ $c_{2} \ge 0$ $c_{2} \le 0$						
	$4.F(X) = x^{1} - 3x^{2} \rightarrow \min \\ \begin{cases} -x_{1} + x_{2} \le 0 \\ -2x_{1} + x_{2} \le 0 \\ x_{1} + 3x_{2} \ge -0 \\ x_{1} - 2x_{2} \le 2 \end{cases}$	5 6 3								
	1. $F(X) = -x^{1} + 4x^{2} \rightarrow x^{2}$ $\begin{cases} 2x_{1} + 3x_{2} \leq \\ -8x_{1} + 3x_{2} \leq \\ 2x_{1} - 3x_{2} \leq \\ 4x_{1} + 3x_{2} \geq \\ \end{cases}$	min 24 ≤ 24 12 −12								
Note	Homework should be prese the case of delivery of wo received by the student for y	nted in the ex rk after a fin work are remo	xact time set b xed period, 50 oved.	by the teacher. In 0% of the points						

Calendar-thematic plan of distribution of hours with the indication of the week, topics

Nº	Date	Subject	Number of hours	Literature	Preliminary questions on modules
1	1	Linear Equations	2	Literature: Basic	 Types of straight lines Point of intersection of lines
2	1	Systems of second order. Cramer's Rule	2	1.General course of higher mathematics for economists edited by prof. VI Ermakova. Textbook. INFRA -	1.What is a system of equations. 2. Conditions for the application of the Cramer rule
3	1	Systems of linear equations. Determinants. Cramer's Method	2	M.2001g. 2. Higher mathematics for economists edited by prof. N.Sh. Kremer. Textbook Moscow, UNITI, 2013. 3. Collection of problems in higher	 Rules for calculating determinants The application of Cramer's method for solving the system of equations
4	2	Matrix. Operations on matrices.	2	mathematicsforeconomists.Editedbyprof.VIErmakovaUchebnoeposobi.Moskva,	 Definition of the concept of a matrix. Types of matrices Actions over matrices.
5	2	Inverse matrix	2	INFRA-M, 2006. 4. Workshop on higher mathematics for economists edited by prof. N.Sh. Kremer. Tutorial. M. UNITY, 2002.	 Conditions for the existence of an inverse matrix Inverse matrix formula Algebraic complement of matrices
6	3	Exercises	2	Additional 1. Kremer NS, BA	Problem solving on the topics covered
7	3	Determinants of 4order	2	Pathko, IM Trishin, M, N. Fridman Higher mathematics for economists M: .UNITI, 2001. 2. Arefiev K.P., Ivlev	1.Method of calculating determinants of the 4- order 2.Computation rule by element or row
8	3	Gauss method - the method of elimination	2	E.T., Tarbokova T.V. Systems of linear equationsTomsk: Rotoprint TPU, 1996. 3. Barysheva VK, Galanov Yu.I., Ivlev E.T., Pakhomova Ye.G. Theory of Probability	1.Conditions for solving systems of equations by the Gauss method2. The Gauss method as a universal method for solving systems of equations

9	4	Matrix equations	2	Tomsk: ed. TPU, textbooks of Tomsk Polytechnic University, 2004. 4. Arefiev K. P., Ivlev E.T., Tarbokova T.V.	 Types of matrix equations Matrix operations in solving systems of equations
10	4	Method inverse matrix	2	equations Tomsk: Rotaprint TPU, 1996. 5. Arefiev K. P., Ivlev E.T., Tarbokova T.V. Vector algebra and analytic geometry	1. Application of an inverse matrix in solving systems of equations 2.Matrix equations in economics
11	5	Examination №1	2	Tomsk: Rotaprint TPU, 1996.	
12	5	Vectors. Linear operations on vectors	2	6. Kang Yong-hee. Differential equations of the first order Tomsk: Rotaprint TPU, 1996.	 Definition of a vector Linear operations on vectors
13	5	The scalar product of two vectors	2		 Formula for the scalar multiplication of two vectors Application of the scalar product of vectors in solving economic problems
14	6	Exercises	2		
15	6	Equations of lines. Direct on the plane	2		 Types of equations of lines in the plane and in space Singularities of lines in space
16	7	Plane. Equations of plane	2		 Definition of a plane as a geometric concept Equation of a plane and application.
17	7	Direct in space	2		 The equation of a line in space. The problem of direct
18	8	Lines and plane in space	2		1.Features of lines in space 2.Features of the plane in space 3.Plane equation

19	8	Curves 2 order. Circle.	2	1.The concept of 2-orde curves 2.Types of equations of circle
20	9	Ellipse	2	 Ellipse equation Basic characteristics o the ellipse
21	9	Hyperbola	2	 Hyperbola equation Basic characteristics of the hyperbola
22	10	Parabola	2	 Parabola equation Basic characteristics of the parabola
23	10	Exercises	2	
24	11	The use of analytic geometry in the economy	2	
25	11	Examination №2	2	
26	11	Model Leontief	2	
27	12	Supply and demand.	2	
28	12	Market Equilibrium	2	
29	13	CVP Models	2	
30	13	Introduction in linear programming	2	
31	13	The geometrical approach to the solution of problems of linear programming	2	

32	14	A problem on a minimum	2		
33	14	Exercises	2		
34	15	A transport problem.	2		
35	15	Closed transport problem	2		
36	15	Exercises	2	-	
37	16	Examination №3	2		
38	16	Examples of calculation	1		
		TOTAL	75 hours		

www.keu.edu.kg

Schedule of independent work of students

N⁰	Weeks Months	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Amount of points
			Oct	ober				Nov	emb	er		December						
1	Current control		1	0			15						15					40 points
2	Deadline IWS*.	1	9-24	.02.1	18		2	26-31	1.03.	18				7-12.	05.18			